If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2+28x-23=0
a = 49; b = 28; c = -23;
Δ = b2-4ac
Δ = 282-4·49·(-23)
Δ = 5292
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5292}=\sqrt{1764*3}=\sqrt{1764}*\sqrt{3}=42\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-42\sqrt{3}}{2*49}=\frac{-28-42\sqrt{3}}{98} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+42\sqrt{3}}{2*49}=\frac{-28+42\sqrt{3}}{98} $
| 6r-12=2-3r | | -2-2(-3x+3)=-(x+2)-6 | | 90*y=450 | | 5(4x+4)=-9 | | 8w-1=(10w)(30)+4 | | 73=-3x=55 | | 3x-36=18 | | x-2=-3x-10 | | -3-5v=-53 | | 2(x+2)+4=20-x | | x+2+x+2=140 | | 8+1/2x=6+3/4x | | 2/5x+1=3+3/10x | | 10x-10-8x+21=4 | | 5x-10x=6-12x+15 | | -3x+9+5x=2 | | 8^2+3-k=0 | | -40c^2+31c=6 | | 47Z+3x=32 | | -6(3x-1)=3(-2x-2) | | 7/2x+5/6x=7/4 | | 2x-1/4=3 | | -6(3x-1=3(-2x-2) | | 3e+4=12+3e | | 5(x+2)=525 | | (8-z)(5z+3)=0 | | 5+t=63.75 | | 5(1-2(x/2))=4x | | 4-4/3x=16 | | 8.2=3n-5 | | 15-5/6x=-10 | | 3x-54=153 |